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The paper points at certain problems associated with direct use of stochastic differential equations 
for description of chemical engineering processes or with the use of corresponding diffusion 
equations. It is shown that on the basis of various definitions one can write down three types 
of stochastic differential equations which might, in principle, describe the same process. One of 
these types is at the same time equivalent to the classic transport equations common in chemical 
engineering. A method is described removing these inconsistencies. 

The previous communication! pointed at the differences in the notation of transport 
equations employed in chemical engineering, i.e. differential mass balances of the 
component or energy balances in the flowing fluid and the notation of the Kolmo­
gorov diffusion equations, derived in the mathematical theory of random processes 
(see e.g.2.3). 

Specialized mathematical literature2 •3 further proves that these equations are 
associated with the stochastic differential equations enabling direct description of the 
development of a random process in time. This fact has been used in chemical engineer­
ing, as well as in many other disciplines, in such a way that the stochastic differential 
equations permit one to formulate relatively simply the physical model of a chemical 
engineering random process4 • This relationship can be further modified by using 
simple rules to obtain the Kolmogorov parabolic differential equation for the com­
plete probability characteristic of the process - its distribution function or the 
probability density function. Solution of this last equation enables us to obtain 
a detailed information about the process; the probability density may then be often 
regarded to be a function proportional to the concentration of the component or 
the temperature of the medium. 

There exist a large number of papers applying this procedure; some of them have 
been quoted in the preceding communication 1. Here we shall therefore quote only 
reviewss- 7 and chemical engineering monographs4 - s explaining the application 
of such a process. 
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Recently, in connection with the development of powerful computers, there is 
a tendency to model processes directly by means of stochastic differential equations; 
in chemical engineering this approach is being applied, for instance, for description 
of chemical reactors9 - 11 . A broader exploitation of this method, however, is being 
hampered, according to our oppinion, by the fact that in the specialized mathematical 
literature two methods are used for notation of the stochastic differential equations 
- the Ito and the Stratonovich notation. These two notations may, in some cases, 
provide from the viewpoint of practical application different results (see e.g. ref.4). 

From the theoretical viewpoint this dual character of the notation is determined 
by two ways of defining the stochastic integraI4 ,12.13. In the following paragraph 
we shall therefore briefly point out these differences. We shall show that one can 
set up another definition leading to a third way of notation of the stochastic differen­
tial equations and that this approach is sometimes adequate to the "classic" transport 
equations used in chemical engineering. 

THEORETICAL 

Description of Motion of a Particle in the Flowing Fluid 

Equally as in the preceding communication 1 we shall aim at illustrative concepts 
and applications of the mathematical model considered to a concrete process: 
the motion of a particle of a distinguishable component in the flowing fluid (in a less 
illustrative case the motion of an energy quantum in this fluid) taking place in the 
three-dimensional Euclid space. This particle is taken to be a mass point and its 
position shall be determined by the position vector X(t). Let us assume that the 
particle, on the one hand, is carried away together with the fluid and, on the other 
hand, moves also relatively to the fluid, this latter motion being caused by random 
collisions with particles of the fluid surrounding it. The effect of the external forces 
is therefore regarded as insignificant. 

The situation considered may be described by a relatively simple kinematic model 
expressing the velocity of the distinguishable particle as a linear superposition of the 
velocity of the fluid v, carrying the particle and the relative velocity of the particle 
with respect to the fI uid: 

dX(t)/dt = v(X(t), t) + G(X(t), t) . ~(t). (1) 

In this equation the velocity v is generally considered to be a deterministic function 
of the instantaneous position of the particle and explicitly also time. The first coeffi­
cient of the last term is generally a second order tensor and also a deterministic 
function of the position and explicit function of time. It characterises also the pro­
perties of the medium in which the particle moves and if this medium is homogeneous, 
isotropic and does not vary in time, it is merely a scalar constant. 
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The second coefficient ~(t) determines the random character of the interactions 
of the particle with the medium. It is a vector function of time and usually termed 
"the white noise,,14. It is assumed that the expected value of this function is identically 
equal to zero and that its individual components are mutually independent with 
the autocorrelation functions, the latter being equal to the Dirac function. The 
dot between the symbols designates the scalar product. 

If the flow of the fluid itself displays random (turbulent) behaviour the symbol v 
shall be taken to be the expected value of the velocity of the fluid that with the effect 
of random fluctuations of this velocity is incorporated in the tensor G. 

Eq. (1) is called the stochastic differential equation and it is written in the Langevine 
form. As long as the effect of the stochastic, i.e. the last term is negligible the equation 
changes into a set of three ordinary differential equations for individual coordinates 
of the vector X(t). In spite of the obvious physical interpretation it has, however, 
a substantial drawback. It may be proven that the vector ~(l) is not correctly defined 
in the sense that each of its components in any time instant grows above all limits. 
In spite of this drawback, however, the stochastic differential equation in the Lange­
vine form has been considered in many disciplines to be a useful tool. However, as 
noted by van Kampen12, the above notation does not have an unambiguous meaning; 
the properties of the vector ~(t) are insufficient for a unique description of the process. 
This problem shall be discussed in the following paragraph. 

More Perfect Ways of Notation of Stochastic Differential Equations 

In order that we may remove the first of the drawbacks of the notation of Eq. (1), 
mentioned in the preceding paragraph, we shall introduce an integral of "white 
nose" as the, so called, Wiener process (see e.g. ref. 2): 

Wet) = J~ ~(s) ds, (2) 

i.e. a random (vector) function of time with the probability density defined by 

03 
- P{Wdt) < Wl' W2(t) < W2' W3(t) < W 3 } = 
OW10W2 0W3 

= (27tt>-3/2 exp [ -(W~ + W~ + w~)/2t] . (3) 

From the given definition it follows that the Wiener process is a random function of 
time with the normal distribution, zero expected value and dispersion equal to the 
time that elapsed from the onset of the process. It is further apparent that in the 
initial time instant this process has a zero value. For the above stated reasons here 
we have directly defined the three-dimensional Wiener process; from the definition 
it also follows that the components of the process Wet) are mutually independent. 
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By means of the Wiener process Ito has defined the stochastic integral (see e.g. 
ref. 2) written in the unidimensional form as a limit of the sum 

.. -I 

S:: K(t) dW(t) = lim L K(tk)[W(tk+l) - W(tk)], (4) 
1/-+0 k=O 

where ta = to < tt. '" < tn = tb, e = max (tk+t. - tk)' 
K(t) is a general random function of time with certain properties; it must not firstly 
depend on the difference W(tk+l) - W(tk)' This requirement, however, is fully 
satisfied for a broad class of functions as with respect to the normal distribution 
of the Wiener process even the Wiener process W( tk ) itself, considered in the initial 
time instant of the time subinterval tk + 1. - tko is independent of the increment 
W(tk+ I) - W(tk)' First of all this property enabled the development of an extensive 
mathematical apparatus for the description of a large class of random processes 
(see e.g. refs2 •13). It may be, for instance, shown that 

S:: K(t) dW2(t) = S:: K(t) dt; S:: K(t) dW(t) dt = 0; 

S:: K(t) dWt.(t) dW2(t) = 0, 

where WI and W2 are mutually independent processes. 

(5) 

The definition of the stochastic integral (4) permits first of all correct notation 
of the stochastic differential equation (1) in the form 

dX(t) = vl(X(t), t) dt + Gr(X(t), t). dW(t) (6) 

which has to be understood in the sense of the integral notation 

X(tb) - X(ta) = S:: vr(X(t), t) dt + S:: GI(X(t), t). dW(t) (7) 

for all tb and ta satisfying the relation 0 ~ ta < tb ~ T < 00 • 

The first integral is the usual integral in the sense of the Riemann definition (for 
individual components of the vector VI), the second is a stochastic integral in the 
sense of Ito calculus: 

n-I 

S::Gr(X(t), t). dW(t) = lim L GI(X(tk)' tk)' [W(tk+l.) - W(tk)]' (8) 
I/ .... Ok=O 

The coefficients in Eq. (6) have been distinguished by means of superscripts from the 
coefficients of Eq. (1); as it will be shown there need not be unique relationship 
between them. There exists namely another definition of the stochastic integral (4) 
or (8) proposed by Stratonovich, which shall be written directly in the three-dimen-
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sional form 
n-l 

(S) J:~ GS(X(t), t) . d Wet) = lim L GS((X(tk+ 1) + X(tk))/2, 
" ... 0 k=O 

(9) 

In this definition the value of the function GS is assigned to the mean of the time 
subinterval t k + 1 - t k and it is thus dependent on the increment A Wk == W( tk+ 1) -
W(tk). The integral (9), however, may be defined by means of the Ito integral (8) 
using a procedure13 which shall be here introduced in a simpler manner. First we 
put AXk == X(tk+1) - X(tk) and Lltk == tk+l - tk, write the Taylor expansion of the 
tensor function GS with respect to these differences while neglecting all higher order 
differences excepting the first order differences: 

where 

GS((X(tk+l) + X(tk))/2, (tk+ 1 + tk)/2) = GS(X(tk) + AXk/2, 
tk + Atk/2) ::::: GS(X(tk)' tk) + t[ AXk . V] GS(x, tk)lx=x(tkl + 

+ Atka GS(X(tk), t)lt=tk + ... 
2at 

(10) 

designates the differential operator in the three-dimensional Euclid space and the 
brackets the priority of mathematical operations. In the following text we shall always 
consider that the operator V relates to all terms of the product written to the right 
of this symbol. 

For the difference AXk we shall substitute from the stochastic differential equation 
(6) considering the integral form (7) 

S [ ] S Atk ass ~[' ] S Gk + t AXk • V Gk + - - Gk ::::: Gk + "2" vk Atk . V Gk + 
2 at 

[ , ] S Lltk a s + 1- Gk • A Wk • V Gk + - - Gk + ... 
2 at 

(11) 

All functions in the last equation are assigned to the beginning of the time sub­
interval Atk , in the abbreviated notation we put G~ == GS(X(tk ), tk); further it hold 
v~ == v'(X(tk ), tk) and G~ == G'(X(tk ), tk). From the expressions (10) and (11) sub­
stituted into Eq. (9) it is apparent that with respect to the second of Eqs (5) the terms 
in product with Atk are equal to zero. Therefore we shall obtain again in the ab-

Collection Czechoslovak Chern. Cornrnun. (Vol. 53) (1988) 



Stochastic Diffusion Processes 1505 

breviated notation 

The two integrals on the right hand side are the Ito integrals defined by Eq. (8). 

In the last term of the expression behind the integral we shall perform first a few 
operations of the scalar multiplication. The symbol G+ shall designate the tensor 
whose matrix is a transpose matrix with respect to the tensor G, i.e. {Gpq} = {G:p} 

for each element of the matrix. Thus we obtain 

s:~ [G' . d W. VJ GS • d W = s:~ [d W. G+ f • VJ d W. G+ s = 

= n= [G+ 1 . V . dW] dW. G+ s = s:~ [G+'. V. IJ dt. G+ s = 

= S:: [G+'. VJ. G+ S dt (13) 

The expression d W d W in the middle of these equations is a dyadic product which 
may be described by the matrix whose elements are equal {Wp(t) Wit)}, p, q = 1,2, 3. 
From the third of the expressions (5) it is apparent that for p =1= q the corresponding 
integrals vanish; the case p = q is determined by the first of the relations (5). Finally 
we shall consider that the functions G1 and GS are identical, i.e. that for each element 
of the matrix we have {G!q(X(t), t)} == {G~q(X(t), t)}, so that we obtain the relation 
for the Stratonovich integral in dependence on the Ito integral 

(S) S:: G(X(t), t) . d Wet) = S:: G(X(t), t) . d Wet) + (1/2) S:: J(t) dt , (14) 

where the superscripts are omitted and where the vector 

J(t) == [G+(X(t), t). VJ . G+(X(t), t) (15) 

shall be termed the "semidiffusion" flux. By means of the integral, defined in such 
a way, one can write the Stratonovich differential equation in the form 

dX(t) = ~(X(t), t) dt + G(X(t), t). dW(t). (S) (16) 

As long as X(t) is to be the same solution of both equations we must have that 

VS(X(t), t) = v'(X(t), t) - (1/2)J(t). (17) 

The presented results may be derived mathematically quite rigorously by intro­
ducing the so-called Q-multiplication in abstract spaces1S • 

In the very same way we shall now introduce the third definition of the stochastic 
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integral by assigning the subintegral function to the end of the time subintervals 
tl<.+l - tk: 

n-l 

(T) J:: GT(X(t), t) . dW(t) = lim I GT(X(tk+l)' tk+ 1). 
1I .... 0k =O 

(18) 

The integral defined in such a way shall be termed the transport stochastic integral 
for - as we shall further show - the stochastic differential equation in which one 
can use this integral is adequate to the differential equations applicated in chemical 
engineering for the description of mass and heat transfer. 

Further we shall use the analogous procedure as in the case of the Stratonovich 
integral. Instead of Eq. (10) we shall obtain 

GT(X(tk+ 1), tH1) = GT(X(tk) + AXk , tk + Atk) ~ GT(X(tk)' tk ) + 

+ [AXk • V] GT(x, tk)I,,=x(tk) + Ark ~ GT(X(tk)' t)lt=tk + ... . (19) at 

It is apparent that the expressions in Eqs (11) through (17) shall be analogous; 
only the coefficient 1/2 disappears in the corresponding terms. We may thus write, 
instead of Eq. (14), the relation between the Ito and the transport integral and con­
sidering the same equation also the relation between the Stratonovich integral 

(T) J:: G(X(t), t) . d Wet) = J:: G(X(t), t) . d Wet) + J:: Jet) dt = 

(S) J:: G(X(t), t) . d Wet) + J:: Jet) dtl2 . (20) 

The stochastic differential equation on the basis of the transport integral has an 
analogous form (16) 

dX(t) = yT(X(t), t) dt + G(X(t), t). dW(t) , (T) (21) 
where 

yT(X(t), I) = yl(X(t), t) - Jet) = yS(X(t), t) - )(1)/2. (22) 

By means of the Wiener process it could be clearly possible to define the whole 
family of stochastic integrals13 and corresponding stochastic differential equations 
in dependence on the choice of the time instant Atk , i.e. 

n-l 

(ct) J:: G(X(t), t). dW(t) = lim L G((X(tk) + IX AXk), tk + IX Atk) • 
1I .... 0k=O 

(23) 
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The integrals for ('f. = 0 and ('f. = 1/2 (the Ito and the Stratonovich integral) play 
an important role in the theory of random processes as well as in practical applica­
tions. In the following paragraph we shall attempt to show also the possible applica­
tions of the transport integral, i.e. the case when ('f. = 1. 

The Relationships between Stochastic Differential Equations 
and the Kolmogorov Equations 

We shall consider again a random motion of a distinguishable particle (molecule 
of the component) in the flowing fluid. The relationship (13.1)* in the preceding 
communicationl defined the transitive probability density f(x; tly; T) that the particle 
with the probability f dV shall appear in an infinitesimaly small volume dV = 

= dX 1 dX2 dX3 on condition that at some previous time instant T < t the particle 
certainly was at the point determined by the position vector y. 

Let us assume further that the Ito stochastic differential equation (6) describes 
this motion with sufficient accuracy so that we may write 

X(t) = y + J! v'(X(s), s) ds + J!G(X(s), s). dW(s) (24) 

In the literature (see e.g. ref. 2) it is proven that for the transitive probability density 
of this process f = f(x; tly; T) one can derive the Kolmogorov forward diffusion 
equation (parabolic differential equation) which we shall write in the following form 

of/ot + V. [v'(x, t)f] - (1/2) V . [v. [G(x, t). G+(x, t)]f] = o. (25) 

(For the meaning of the brackets and the function of the differential operator see 
the note past Eq. (10)). The written equation is identical with (18.1) while it holds 

VI(X, t) == a(x, t); G(x, t). G+(x, t) == B(x, t) . (26) 

For individual elements of the matrix we may write 

3 

{Bpq(X, t)} = {L Gp.(x, t) Gq,(x, t)} 
r= 1 

and Eq. (25) may be written in the component form 

of 3 a 3 02 

- + I - [v~(x, t)f] - (1/2) I -- [Bpq(x, t)f] = o. (25a) 
at p= 1 OXp p,q= 1 oXpOXq 

• The relationship presented in the preceding communication 1 shall be here referred to by 
the form (K. 1) where K is the number of the equation in the first communication. 
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In case that the Stratonovich stochastic differential equation (16) is regarded as 
more accurate we shall use again the previous procedure with that in the Ito equation 
(24) we substitute for VI from Eq. (17): 

X(t) = y + S! VS(X(s), s) ds + (1/2) S!J(s) ds + S!G(X(s), s). dW(s). (27) 

Now we are in the position to write down the analog of Eq. (25) by performing the 
inner differentiation of the product in the last term in such a way that the operator 
shall first operate on the function G+ and then on the product Gf. Thus we obtain, 
after some modifications 

of/at + Vf. [VS + (1/2))] - 0/2) V . [fJ + G. [V. G]f] = O. (28) 

After multiplication the terms containing the semidiffusion flux J clearly cancel out 
so that we finally obtain the Kolmogorov equation corresponding to the Stratonovich 
equation 

of/at + Vf. VS - (1/2) V . [G. [V . Gf]] = 0, (29) 

or in the component notation 

of 3 a S 3 a [ a ] _ - + ~ - [vp(x, t)f] - (1/2) L _ - Gpr(x, t) - [Gqr(x, t) f] - O. (29a) 
at p-l oXp p.q.r-l OXp OXq 

Finally we can write down analogously, provided that the transport stochastic 
equation (21) describes best the process considered, Eq. (24) after substituting here 
from Eq. (22) 

X(t) = y + S! vT(X(s), s) ds + S!J(s) ds + S! G(X(s), s) . dW(s) . (30) 

Adequate Kolmogorov equation is similar to Eq. (28) in which we still differentiate 
the product Gf in the last term and at the same time substract the terms containing 
the semidiffusion flux J; thus we obtain 

of/at + Vf. vT + (1/2) Vf. [J - G. [V. G]] - (1/2) V . [[G. G+] . Vf] = 0, (31) 

or in the component notation 

(31 a) 
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In the last term we took into consideration the second from the definition relationship 
(26). Clearly, as follows from the previous communication! in case that the third 
term should be equal to zero the relationship (31) would be, as far as the position 
of the differential operators is concerned, identical with the transport equations 
(11.1) and (12.1) usually used in chemical engineering. The following relationship 
would then have to hold for all p, q, r = 1,2, 3 

(32) 

It can be easily shown that in this case the elements of the matrix of the tensor G 
would have to have the following form 

(33) 

where cpq are constants (or functions of time only) and gq are generally scalar func­
tions of spatial coordinates and time which are the same in individual columns 
of the matrix. It is further apparent that the condition is immediately fulfilled as 
long as G is independent of spatial coordinates. Some coefficients, however, may 
equal zero so that Eq. (32) is, for instance, fulfilled for each diagonal matrix. 

The elements of the matrix of the tensor 8 are in the general case a linear combina­
tion of the functions g, i.e. 

3 

{BN(X' t)} = {L cprcqrg;(x, t)} ; (34) 
r~ 1 

the condition (32) is clearly met in the important case when the coefficient B is 
a scalar 

8(x, t) = lB(x, t), (35) 

i.e. in the case of inhomogeneous isotropic diffusion. 

For a sufficiently broad class of processes Eq. (31) may thus be written in the fol­
lowing form 

arlDt + V[J. vT ] - (1/2) V . [8. VI] = 0 (36) 

with simultaneous validity of Eq. (32), or, if Eqs (33) and (34) or (35) hold. After 
integration indicated in Eq. (19.1) this equation holds also for the unconditional 
probability p(x; t) which is, in view of Eqs (20.1) or (24.1) under certain simplifying 
assumptions, proportional to the concentration of the component or the temperature 
of the fluid. The expression 8(x, t)/2 may then be regarded, in view of Eqs (23.1) or 
(25.1), as the diffusion tensor or tensor of thermal diffusivity. 
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DISCUSSION 

In the preceding paragraphs we have presented three ways of notation of the sto­
chastic integral from which there follow three ways of notation of the stochastic 
differential equations and the corresponding Kolmogorov equations. From the 
mathematical standpoint all three relations are equivalent as their results are in all 
cases identical solutions (in the probabilistic sense), i.e. functions X(t), or the transi­
tive probability density f(x; tly; r) for this function are identical. 

Problems with utilization of relations arise in physical applications and are due 
to - as noted by Seinfeld and Lapidus4 - the pathological character of the Wiener 
process which has no derivatives and as such is unrealizable. For this reason some 
authors avoid using this mathematical apparatus16 in describing random processes 
in chemical engineering. Of course, it is obvious that these problems appear only 
in case that the stochastic term (tensor G) is an explicit function of the position 
vector X(t). 

The procedure in setting up a chemical engineering or other model is usually such 
that one sets up first the description of its deterministic components. On this one 
superimposes (in case of diffusion processes considered in the probabilistic sense, 
i.e. random processes for which conditions (15 -17.1) hold) as a randomising factor 
the term containing the white noise function or the differential of the Wiener process 
without deeper analysis of this term. Such a procedure then leads to different results 
as a deeper analysis of the stochastic term is usually practically impossible. 

In our case considered, i.e. in the study of the kinematics of the random motion 
of a particle in the flowing fluid, which may lead to notation of the transport equa­
tions, we thus take the symbols v in Eqs (1), (6), (15), and (21) as the velocity of the 
fluid, i.e. as identical functions of spatial coordinates and time. 

Such a procedure has been used also in the previous communication l ; we have 
presented also 'a review of the cases leading to identical solutions of the Kolmogorov 
equations and the transport equations (i.e. differential mass and enthalpy balances). 
The above review is clearly valid also for the Kolmogorov equation (29) corresponding 
to the Stratonovich stochastic differential equation. In this connection one has to 
remind that van Kampen's remark (see refY,p.291) that this relationship describes 
inhomogeneous diffusion is erroneous as follows from comparison of Eqs (3.1) and 
(3.2) in the cited work and unidimensional variants of Eqs (25), (29), and (31) of 
this paper. 

In the previous communication l we have also stated that apparently it cannot 
be unambiguously decided which of Eqs (25) or (31) - generally the transport 
equations - is "better" and that one has always to consider, or experimentally 
verify, the concrete situation. The same is true also with the use of Eq. (29). It seems 
that in the majority of chemical engineering applications one should prefer Eq. (31) 
as this is the only equation leading to the uniform distribution of the probability 
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density in the steady state and bounded space with reflecting boundaries (see e.g. 
ref. 17). Physically this situation corresponds to the uniform distribution of con­
centration of the mass component or temperature in the bounded part of the space 
under the steady state. It has to be noted though that in case that the condition (32) 
is invalid or in cases when the Kolmogorov equation in the form (25) cannot be 
transformed to the form (36) (see ref. 1), the transport equations cannot be derived 
on the basis of the concept of the stochastic processes developed here. 

In connection with the development of direct modelling of stochastic differential 
equations on the computers one has to point at yet another fact. It seems that from 
the viewpoint of a numeric experiment one should prefer the Stratonovich way 
of notation of the stochastic differential equationslO.ll.18 which may be due to the 
"symmetric" definition of the corresponding integral. (In the original work14 Stra­
tonovich proved, in fact without using this definition, the equivalency of Eqs (1) 
and (I6». 

In this case it would be necessary to use in the modelling of chemical engineering 
processes leading to the uniform distribution the relationship transforming Eq. (21) 
into (16), i.e. to model the process with the aid of the following relationship 

dX(t) = (vT(X(t), t) + J(t)J2) dt + G(X(t), t) . dW(t) (S), (37) 

where J is determined by Eq. (15). The stochastic term in this equation is determined 
by the Stratonovich integral; the function G must, of course, satisfy condition (32). 

In conclusion we shall introduce the approach which, although substantially 
more complicated, is free of the analysed difficulties. The problems that here arise 
are from the physical standpoint caused, among others, by the fact that the kinematic 
model described in Eq. (I), or by analogous equations, is considerably inaccurate. 
We shall therefore introduce the "dynamic" model enabling us to consider generally 
also the forces acting on the particle 

m dV(t)/dt = -p[V(t) - v(X(t), t)] + mh(X(t» + N(X(t), t). ~(t), (38) 

dX(t)/dt = Vet) . (39) 

By means of this Langevine equation one can characterise not only the position but 
also the velocity V of the particle. Eq. (38) is a way of writing the second Newton law; 
it is assumed that the particle is under the action of the friction forces (directly 
proportional - with the constant coefficient of proportionality p - to the difference 
between the velocity of the particle and the fluid), the external conservative force, 
proportional to its mass, m, and further the resulting force of random character, 
expressed by the last term. 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



1512 Kudrna: 

It can be easily proven that as long as the coefficient N in the stochastic term is 
not an explicit function of the velocity, all stochastic integrals, defined in the previous 
paragraphs, are identical. The increment AXk , for instance in Eq. (10), is in this case 
on the basis of Eqs (39) proportional only to the time difference V(tk) Atk. Thus after 
substituting into the Ito stochastic integral this term vanishes with respect to the 
second one of Eqs (5). 

If we put, in addition, that y == p/m; H(X(t), t) == N(X(t), t)/m we can write 
Eq. (38) in a unique form 

dV(t) = -y[V(t) - v(X(t), t)] dt + h(X(t» dt + H(X(t), t). dW(t) , (40) 

to which corresponds, in view of Eq. (39), also the only Kolmogorov equation, 

al2/at + u. V/2 - Y Vu' (uI2) + (yv(x, t) + h(x». Vuf2 -

- (1/2) H(x, t) . H+(x, t): V;f2 = 0, (41) 

where f2 = f2(x, u; tly, uo; -r) denotes the six-dimensional transitive probability 
density characterising both the velocity as well as the position of the particle. V u 

designates the differential operator in the velocity domain and V; the dyadic product 
of these operators. The colon is a double scalar product. 

This equation, although substantially more complicated, permits one to express 
also the effect of the intensity of external forces, h, on this particle. Let us consider 
further that the mass of the particle is very small so that the ratio of the friction 
coefficient and its mass, equally as the tensor H, assume disproportionately larger 
values in comparison with this intensity, which shall be therefore neglected. Further 
we shall substitute from Eq. (39) into (40) and obtain 

dV(t) + Y dX(t) = yv(X(t), t) dt + H(X(t), t). dW(t). (42) 

For large values of y it may be assumed that the velocity of the particle relaxes 
to the steady state value (and hence dV ~ 0) in contrast to the "slow" variations 
of dX and therefore for longer times elapsed from the onset of the process we neglect 
the velocity fluctuations of the particle with respect to the fluctuations of its position 
(This procedure is termed adiabatic elimination13). It is apparent that with this 
procedure Eq. (42) does not differ from the earlier written stochastic differential 
equations (we have G == H/y), where, however, problems arise with the definition 
of the stochastic integral. 

Eqs (39)-(41) for the case hex) = 0 in this sense may be regarded as unambiguous 
description of the motion of the particle in the flowing fluid whose velocity is in this 
case always determined by the symbols vex, t). The transitive probability density 
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f(x; tlY; r), determined by Eq. (13.1) may be obtained by integration of the function 
r 2 in the velocity domain and after introducing the assumption that the particle 
had at the initial time instant r zero velocity: 

f(x; tlY; r) = Sf2(X, u; tly, 0; r) du . (43) 

In the Appendix of this paper we have presented a simple example illustrating 
the outlined procedure. Its results, however, cannot be physically interpreted, yet 
as an advantage remains that all solutions may be written in quadratures. 

CONCLUSIONS 

From the considerations presented in this paper one can draw the following con­
clusions: 

1. A third definition of the stochastic integral, termed the transport integral, 
(Eq. (18» has been proposed on the basis of the relationship between the Ito and the 
Stratonovich definition. Relationships between these three types have been written 
down (Eq. (20». The transport integral enables us to write the stochastic differential 
equation (Eq. (21» and the corresponding Kolmogorov forward equation (Eq. (31» 
which is, under certain confining conditions (Eq. (32», formally identical with the 
differential equations describing the transport of mass and heat. 

2. It was shown that the different rlsults provided by these three types of the 
stochastic differential equations (the Ito, the Stratonovich and the transport equation) 
and the adequate Kolmogorov equations, in case that the stochastic term is a function 
of the spatial coordinates, are due to the different interpretation of individual terms 
in these equations . 

• 3. An equation has been proposed, Eq. (37), permitting us to model the transport 
phenomena usually considered in chemical engineering by means of stochastic 
differential equation while maintaining the validity of the conditions (32). 

4. A "dynamic" model has been poposed, explicitly incorporating also the rate 
of the process and a corresponding equation has been written down, Eq. (40), which 
though substantially more complex, enables a unified interpretation of individual 
terms and hence to obtain always the same results independently of the definition 
of the stochastic integral. A simple example has been presented of such a procedure 
(see the Appendix). 

APPENDIX 

Various Forms of the Diffusion Equation and their Solutions 
We shall first write down a unidimensional analog of the stochastic differential 
equation (39) and (40) in the form 
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dV(t) = - Vet) dt + (1 + p(X(t))1/2 dW(t); dX(t) = Vet) dt, (D.l) 

where p(x) is a so far undefined function and vex, t) == O. 

The Kolmogorov equation corresponding to this equation is 

Of2/0t + UOf2/0X - 0(UI2)/OU - 0/2) 0 + p(x)) 02/2/0U2 = O. (D.2) 

Using the method of adiabatic elimination we shall obtain a simpler stochastic dif­
ferential equation 

dX(t) = (1 + p(X(t))1/2 dW(t) , (D.3) 

with the three corresponding Kolmogorov equations as long as we put 

The Ito interpretation 

of/at - (1/2) 02((1 + p(x))f)/ox2 = 0 ; (DA) 

the Stratonovich interpretation 

of _ (1/2) ~ ((1 + p(X))1/2Jl- (1 + p(X))1/2 f) = 0 ; (D.5) 
at ax ax 

the "transport" interpretation 

of/at - 0/2) ~ ((1 + P(X))~f) = 0 . 
ax ax 

(D.6) 

It is apparent that the coefficient 1 + p(x) satisfies the condition (32). 
We shall now deal with only the steady state solution of Eqs (D.2), (DA - 6). 

Eq. (D.2) shall be rewritten into the following form 

(D.7) 

Solution of this equation shall be sought as the normal distribution of the variable U 

12 = f2(X, u) = f(x) exp (-(u - q(xWj2)j(2n)1/2 . (D.B) 

Having performed the differentiations and substitution into Eq. (D.7) the coefficients 
of individual power of u must be equal: After some modification we shall obtain 
the following relationship: 
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The coefficients of u2: dqldx = (p - 1)/2 ; 

u1 : dlnfldx = -q(p + 1)/2 ; 

uo: q2 = (p - 1)/(p + 1) . 

1515 

(D.9) 

From the first and the third relation (D.9) we shall eliminate q; after some modifica­
tions we obtain 

2 dpldx = ±(p2 _ 1)3/2, (D. 10) 

and further we chose only the negative root. It is apparent that the choice of the form 
of the solution (D.B) determines the form of the function p(x). After integration of 
Eq. (10) and some modifications we obtain, putting the integration constant equal 
to zero: 

p(x) = xl(x2 _ 4)1/2 . (D.ll) 

Further we shall inspect only the solution in region x ~ 2. From Eq. (D.B) hold the 
following relations 

f~:f2 du = f(x); f~: Uf2 du = q(x)f(x) ; (D.12) 

the first of these relations is a simplification of Eq. (43). Integrating in this way 
the whole equation (D.7) we obtain 

d(f(x) q(x))/dx = 0; f(x) q(x) = K = const , (D.13) 

6 

FIG. 1 

2 

Graphic illustration of the solutions of vari­
ous forms of the diffusion equations. D 
"dynamic" model (Eqs (D.2), (D. 8»; I Ito 
interpretation (Eqs (D.4), (D.19»; S Strato­
novich interpretation (Eqs (D.S), (D.20»; 
T "transport" interpretation (Eqs (D.6), 
(D.2l)) 

O~~-----L------~----~--~ 
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x 
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as all terms on the right hand side of Eq (D 7) after integration vanish. From the 
second of equations (D.9) we thus obtain the following relation for f(x) 

djjdx = -K(p + 1)/2. (D.14) 

The steady state solutions of Eqs (D 4 - 6) shall be designated p, fS, IT and after 
the first integration we write 

d((p + l)fl)/dx = -2K 

d((p + 1)1/2 fS)/dx = -2K(p + 1)-1/2 

dF/dx = -2K(p + 1)-1 . 

( D.15) 

(D.16) 

( D.17) 

The constant in Eqs (D.14 -17) has the same value; from the physical standpoint it 
represents the intensity of diffusion flow. We put K = -1, s = (x 2 - 4)1/2; r = x - s. 
The solution of all mentioned relationships may be written in the form of quadratures: 

f = (s + x)/2 

II = xsrl2 

fS = [3{2sr)I/2 arcsin (rI2) + s(4 + rZ/2)J/4 

fT = (53 - x 3 + 12x)/6 . 

It may be easily proven that for large values of x all solutions are identical 

I = fl = IS = r = x [ x -+ co] . 

(D.18) 

(D.19) 

(D.20) 

(D.2I) 

(D.22) 

In the proximity of the point x = 2, however, they differ little. If we consider f(x) 
as "correct" then, as may be apparent from Fig. 1, the nearest solution is the one 
according to Ito - P(x). 

LIST OF SYMBOLS 

a drift velocity, m s-I 
B diffusion tensor, m2 s - I 
C constant coefficients of matrix of tensor G, m s - 1/2 

e unit vector 
f transitive probability density of particle position, m - 3 

12 transitive probability density of particle position and velocity, m - 6 s3 
G stochastic tensor, m s -1/2 

!< scalar function in columns of matrix of tensor G 
H tensor of "intensity" of random forces, m s - 3/2 
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h intensity of conservative forces, m s - 2 

I identity tensor 
J "semidiffusion" flux, m s-l 
K random function of time independent of fl W 
m mass of particle, kg 
N tensor of random forces, kg m s - 3/2 

P unconditional probability density for particle position, m - 3 

time, s 
u particle velocity - variable in distribution function, m s - 1 

V volume, m3 

V particle velocity, m s-l 
V fluid velocity, m s-l 

W Wiener process (three-dimensional) - random function of time, s 1/2 

w variable in distribution function of Wiener process, s 1/2 

X particle position vector - random function of time, m 
x particle position vector - variable in distribution function, m 
y initial particle position, m 
p coefficient of friction, kg s - 1 

Y "intensity" of coefficient of friction, s-l 
.; "white noise" function, s -1/2 

'l" initial time instant, s 
V differential operator with respect to spatial coordinates, m -·1 

V u differential operator with respect to velocities, m - 1 S 

fl difference (increment) 

Subscripts 

a related to beginning of integration time interval 
b related to end of integration time interval 
k related to beginning of k-th time subinterval 
o related to initial velocity 
p index of matrix of tensor 
q index of matrix of tensor 
r index of matrix of tensor 

Superscripts 

I related to Ito interpretation 
S related to Stratonovich interpretation 
T related to "transport" interpretation 
G+ tensor whose matrix is transpose with respect to matrix of tensor G 
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